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Abstract— This paper reviews a recently developed adaptive output feedback control methodology using
neural networks. It is shown how to remove the contraction mapping assumption used in the original paper
and it is clarified the impact of this removal in the approximate model selection. Moreover, it is illustrated how
to explore the previous information, available in the form of an approximate model, to improve the controlled
system performance.
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Resumo— Neste trabalho faz-se uma revisão de uma técnica recentemente desenvolvida de controle adaptativo
utilizando realimentação de sáıda e redes neurais. É mostrado como se pode remover a suposição de mapeamento
tipo contração utilizada no trabalho original, além de se esclarecer o impacto deste resultado na seleção de um
modelo aproximado da planta. Ilustra-se também como se pode explorar a informação prévia dispońıvel, sob a
forma de um modelo aproximado, na melhoria de desempenho do sistema controlado.
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1 Introduction

Research on adaptive control using neural net-
works (NN) is motivated by novel actuator devices
and the existence of a large class of nonlinear sys-
tems for which a systematic constructive control
procedure has not been developed yet.

The first works in adaptive control using neu-
ral networks date back 1980s and early 1990s. A
pioneer work in this field that used NN in identifi-
cation and control of nonlinear dynamical systems
is that reported by Narendra and Parthasarathy
(1990). Following Narendra and Parthasarathy’s
work, Sanner and Slotine (1992) used radial basis
function (RBF) NN to control affine nonlinear sys-
tems by state feedback. Furthermore, Sanner and
Slotine combined NN with proportional-derivative
(PD) and nonlinear sliding mode controllers and
proved system stability through a Lyapunov based
analysis. A similar approach was used by Lewis
et al. (1995) to control a planar robotic manipula-
tor. As in the work of Sanner and Slotine, and in
contrast to Narendra and Parthasarathy’s work,
this approach does not need an off-line training
phase and the control architecture was composed
of linear in the parameters neural networks.

All the works that were mentioned so far are
characterized by NN that operates in conjunction
with other linear or nonlinear controllers and are
thus a kind of assisted control techniques. A dif-
ferent approach that uses NN as the main cen-
tralized controller can be found in the works of
Rovithakis (1999), Ge et al. (1999) and Ge and
Zhang (2003). The main drawback shared by
these approaches lies on the centralized control
architecture that can lead to undesirable or com-
pletely intolerable transient behavior, specially in

critical applications like aircraft control (Stevens
and Lewis, 2003).

An approach that can use prior knowledge
about the plant and combines input-output lin-
earization (Isidori, 1995), NN and linear control is
reported in (Calise et al., 2001). In this paper NN
compensates the inversion error that arises when
an approximate model is used in dynamic inver-
sion. A contraction mapping is assumed between
the adaptive control and the inversion error, which
poses some restrictions in the model selection.

Based in the work of Hovakimyan et al.
(2004), which is similar but uses observers to cal-
culate the error vector, we remove the contraction
mapping assumption and show the impact of this
result in model selection. It is shown that the
same update law, proposed by Calise et al. (2001),
can be used without the contraction mapping as-
sumption provided that some additional knowl-
edge about plant dynamics is available. This arti-
cle also address the problem regarding the model
choice in a way to satisfy the conditions used in
the stability proof.

2 Problem Statement

Consider a SISO, continuous-time and observable
nonlinear dynamical system given by

ẋ = f(x, u), (1)

y = h(x), (2)

where x ∈ Ω ⊂ Rn is the state, u ∈ R is the
input and y ∈ R is the output. In (1)-(2) f(., .) :
(Rn × R) 7→ R and h(.) : Rn 7→ R are both
continuous and differentiables and n need not be
known.



Assumption 1. The dynamical system given by
Eqs. (1)-(2) is feedback linearizable with relative
degree r. That is

y = h(x) = L0
fh(x) = h0(x)

ẏ =
(

∂h

∂x

)T

f(x, u) = Lfh(x) = h1(x)

ÿ =
(

∂Lfh(x)
∂x

)T

f(x, u) = L2
fh(x) = h2(x)

...

y(r) = Lr
fh(x, u) = hr(x, u), (3)

with dhk

du = 0 for 0 ≤ k < r.
As in (Calise et al., 2001), it is desired that the

output y follows yd generated by a stable reference
model and is also assumed that only the output
measurements are available. Moreover, any inter-
nal dynamics is assumed stable.

The control strategy is based in input-output
linearization and is shown in section 3.

3 Controller Architecture

Input-output linearization is done using a pseudo
control variable defined as follows

y(r) = v∗, (4)

v∗ = hr(x, u) (5)

and
u∗ = h−1

r (x, v∗). (6)

An approximate inversion can be made with

v = ĥr(y, u), (7)

u = ĥ−1
r (y, v). (8)

In (Calise et al., 2001), the output of the NN is
designed to cancel ∆ defined by

∆ = ∆(x, u) = hr(x, u)− ĥr(y, u) (9)

and v is given by

v = y
(r)
d + vdc − vad, (10)

where vdc is the output of a single-input multi-
output (SIMO) linear compensator, and vad is the
output of a NN. In this way, vad is designed to
cancel ∆, which depends of vad through v. To
guarantee existence and uniqueness of a solution
for vad a contraction mapping between it and ∆ is
assumed and the following two conditions restrict
the choice of an approximate model:

sgn(∂hr/∂u) = sgn(∂ĥr/∂u), (11)

||∂ĥr/∂u|| > ||∂hr/∂u||
2

> 0. (12)

To eliminate the need of condition (12), based in
the work (Hovakimyan et al., 2004), we define

va = vdc + y
(r)
d (13)

and
vb = ĥr(y, h−1

r (x, va)). (14)

Because of the assumed invertibility of ĥr(., .) and
hr(., .) with respect to the second argument

h−1
r (x, va) = ĥ−1

r (y, vb)

va = hr(x, ĥ−1
r (y, vb)). (15)

Now, based on Eqs. (9),(10), (14) and (15) we can
write

vad −∆ = vad − hr(x, u) + ĥr(y, u)
¨ ¨ = vad − hr(x, u) + va − vad

¨ ¨ = −hr(x, u) + va

¨ ¨ = −hr(x, ĥ−1
r (y, v)) + va

¨ ¨ = hr(x, ĥ−1
r (y, vb))− hr(x, ĥ−1

r (y, v))
(16)

If hr is continuous and differentiable over the in-
terval [v, vb], then, by applying the mean value
theorem, there exists a v̄ such that

dhr

dv
|v=v̄ =

hr(x, ĥ−1
r (y, vb))− hr(x, ĥ−1

r (y, v))
vb − v

(17)
where

v̄ = v + θ(vb − v), 0 ≤ θ ≤ 1. (18)

Equation (16) can now be rewritten as

vad −∆ = dhr

dv |v=v̄(vb − v)
¨ ¨ = hv̄(vb − v)
¨ ¨ = hv̄(ĥr(y, hr(x, va))− va + vad)
¨ ¨ = hv̄(vad − ∆̄(x, y, va)),

(19)
where

∆̄(x, y, va) = ĥr(y, hr(x, va))− va, (20)

hv̄ =
dhr

dv
|v=v̄ (21)

According to Assumption 1, ∂hr

∂u 6= 0 and ∂u
∂v =(

∂v
∂u

)−1
, therefore, in the light of (7) we have

dhr

dv = ∂hr

∂u

(
∂ĥr

∂u

)−1

. (22)

If condition (11) is satisfied, then

dhr

dv
=

∂hr

∂u

(
∂ĥr

∂u

)−1

> 0 (23)

and the error dynamics can be expressed as

ỹ(r) = −vdc + hv̄(vad − ∆̄). (24)



Figure 1: Control System block diagram.

Now, the adaptive signal vad is designed to cancel
∆̄, which does not depend explicitly on u.

Figure 1 shows a schematic diagram of the
controller architecture. It should be noted that
Fig.1 is similar to the controller structure in
(Calise et al., 2001), but now the input to the
neural network is not v but va. For systems with
stable zero dynamics an additional delayed input
v(t− d) may be required to account for the unob-
servable states. The delayed v signal avoids the
fixed point solution problem at the expense of in-
creased NN approximate error bound (Kim, 2003).

The SIMO linear controller is given by
[

vdc(s)
ỹad(s)

]
=

1
Ddc(s)

[
Ndc(s)
Nad(s)

]
ỹ(s). (25)

where
ỹ = yd − y. (26)

Assumption 2. The roots of Ddc(s) are located
at the open left half complex plane.

The transfer function between ỹ and hv̄(vad−
∆̄) is given by

ỹ(s) =
Ddc(s)[hv̄(vad − ∆̄)](s)

s(r)Ddc(s) + Ndc(s)
(27)

Therefore, from Eqs. (25) and (27) the transfer
function between ỹad and hv̄(vad − ∆̄) is given by

ỹad(s) = Nad(s)[hv̄(vad−∆̄)](s)
s(r)Ddc(s)+Ndc(s)

¨ = G(s)[hv̄(vad − ∆̄)](s).
(28)

A stable low pass filter T−1(s) is introduced
to make the transfer function between ỹad and
[hv̄(vad − ∆̄)] strictly positive real (SPR):

ỹad(s) = Ḡ(s)T−1(s)[hv̄(vad − ∆̄)](s), (29)

where Ḡ(s) = G(s)T (s).
A linear in the parameters NN can be used to

approximate the inversion error ∆̄. The output of
such a network is given by

ynn = WT φ(x), (30)

where W are the NN weights and φ(.) is a vector
basis function over the domain of approximation.

For a general continuous and k times differen-
tiable function g(x) with x ∈ D ⊂ Rn

g(x) = WT φ(x) + ε(x). (31)

In Eq. (31), ε(x) is the reconstruction error.
Definition: The functional range of a NN that
have its output given by (30) is dense over a com-
pact domain x ∈ D if for any continuous and k
times differentiable g(.) and ε∗ there exists a fi-
nite set of bounded weights W such that Eq. (31)
holds with ||ε(x)|| < ε∗.

Theorem 1 (Calise et al., 2001) Given ε∗ > 0,
there exists a set of bounded weights W such that
∆(x, y, va) can be approximated over a compact
domain D ⊂ Ω × R by a linearly parameterized
neural network

∆̄ = WT φ(η) + ε(η), ||ε|| < ε∗ (32)

using the input vector

η(t) = [1 v̄T
d ȳT

d ]T , (33)

v̄T
d = [va(t) va(t− d)... va(t− (n1 − r − 1)d)]T ,

ȳT
d = [y(t) y(t− d)... y(t− (n1 − 1)d)]T

(34)
with n1 ≥ n and d > 0, provided there exists a
suitable basis of activation functions φ(.) on the
compact domain D.

Proof: See (Calise et al., 2001). 2

Theorem 1 allow Eq. (29) to be rewritten as

ỹad(s) = Ḡ(s)T−1(s)[hv̄(ŴT φ−WT φ− ε)](s)
¨ = Ḡ(s)T−1(s)[hv̄(W̃T φ− ε)](s)
¨ = Ḡ(s){hv̄W̃T φf (s) + δ(s)− εf (s)}

(35)
where

T−1(s)(hv̄W̃T φ)(s) = T−1(s)(hv̄W̃T φ)(s)+
hv̄W̃T φf (s)− hv̄W̃T φf (s)
T−1(s)(hv̄W̃T φ)(s) = hv̄W̃T φf (s) + δ(s),

(36)
δ(s) = T−1(s)(hv̄W̃T φ)(s)− hv̄W̃T φf (s), (37)

φf (s) = T−1(s)φ(s), (38)

and
εf (s) = T−1(s)[hv̄ε](s). (39)

Provided that hv̄ is continuous over the interval
[va, v], it reaches its maximum value hvMAX on
this interval and if φ is a squashing function, an
upper bound for δ can be written as

||δ|| ≤ c||W̃ ||F hvMAX . (40)

The following update law (Calise et al., 2001) can
be used to adjust the NN free parameters

˙̂
W = −F [ỹadφf + λŴ ], (41)

where F is a positive definite matrix and λ is the
adaptation gain.

Next section shows how the relaxation of the
contraction mapping assumption alters the stabil-
ity proof.



4 Stability Proof

Let {Ac, Bc, Cc}, {Af , Bf , Cf} be the controller
canonical state space realization of Ḡ(s) and all
the cast filters T−1(s) used to filter φ, respectively
and z and zf be the corresponding state variables
associated with these realizations. Since the filter
T−1(s) is stable and Ḡ(s) is SPR, it follows that

AT
f Pf + PfAf = −Qf , (42)

AT
c P + PAc = −Q (43)

and
PBc = CT

c , (44)

for positive definite Qf , Pf , Q and P . Equation
(44) follows from the Kalman-Yakuvovich lemma
(Astrom and Wittenmark, 1995).

The following theorem is the main result of
this paper and assures ultimate boundedness of
the closed loop signals.

Theorem 2 Subject to Assumptions (1-2) and if
sgn(∂hr

∂u ) = sgn(∂ĥr

∂u ), the error signals of the sys-
tem comprised of the dynamics in Eq. (1-2), to-
gether with the dynamics associated with the re-
alization of the controller and the NN adaptation
rule, are uniformly ultimately bounded, provided
that the following conditions hold:

Q̄m > 2||Cc||2 (45)

and
λ > c̄2/4, (46)

where
Q̄m =

Qm

hvMAX
−HvPMAX (47)

and
c̄ = c

hvMAX

hvMIN
. (48)

In Eqs. (47-48) Qm is the minimum eigenvalue
of Q, PMAX is the maximum eigenvalue of P ,
hvMIN is the minimum value of hv and Hv is the
maximum value of d

dt (
1

hv̄
).

Proof: Consider the following positive definite
decrescent function

V =
1

2hv̄
zT Pz +

1
2
zT
f Pzf +

1
2
W̃T F−1W̃ . (49)

Differentiating (49) with respect to time gives

V̇ = 1
2

[
d
dt

(
1

hv̄

)
zT Pz + 1

hv̄
(Pz + PT z)T ż

]

+ 1
2

[
Pfzf + PT

f zf

]T

żf

+ 1
2

[
(F−1)T W̃ + F−1W̃

]T ˙̃W

V̇ = 1
2

d
dt

(
1

hv̄

)
zT Pz + 1

2hv̄
(Pz + PT z)T [Acz+

+Bc(hv̄W̃T φf + δ − εf )]

+ 1
2

(
Pfzf + PT

f zf

)T

(Afzf + Bfφ)

+ 1
2

[
(F−1)T W̃ + F−1W̃

]T ˙̃W.

(50)

Because of the symmetry of the matrices F−1, P
and Pf , using the fact that the transposition of a
scalar is equal to the same scalar, and substituting
the update law (41) and (42-44) in (50) we get

V̇ =
[

d
dt

(
1

hv̄

)
zT Pz

2

]
− zT Qz

2hv̄

+ zT CT
c

hv̄

(
hv̄W̃T φf + δ − εf

)
− zT

f Qf zf

2

+zT PfBfφ + W̃T F−1 ˙̂
W

V̇ =
[

d
dt

(
1

hv̄

)
zT Pz

2

]
− zT Qz

2hv̄
+ ỹadW̃

T φf

+ ỹad

hv̄
(δ − εf )− zT

f Qf zf

2 + zT PfBfφ

−ỹadW̃
T φf − W̃T λŴ

V̇ = − zT Qz
2hv̄

+ ỹad

hv̄
(δ − εf )− zT

f Qf zf

2

+zT
f PfBfφ− λW̃T (W + W̃ ) +

[
d
dt

(
1

hv̄

)
zT Pz

2

]
.

(51)
Assuming that the filter T−1(s) is scaled so that
its maximum gain is unity, the right side of Eq.
(51) can be upper bounded as

V̇ ≤ −Qm||z||2
2hvMAX

− Qfm||zf ||2
2 + HvPMAX ||z||2

2

+||zf ||||PfBf ||||φ||+ c||ỹad||||W̃ ||F hvMAX

hvMIN

+ ||ỹad||ε∗hvMAX

hvMIN
− λ||W̃ ||(||W̃ ||F −W ∗)

V̇ ≤ − Qm||ỹad||2
2||Cc||2hvMAX

+ HvPMAX ||ỹad||2
2||Cc||2

+c̄||ỹad||||W̃ ||F + ||ỹad||ε̄∗
−||zf ||

(
Qfm||zf ||

2 − ||PfBf ||||φ||
)

−λ||W̃ ||(||W̃ ||F −W ∗)

V̇ ≤ − Q̄m||ỹad||2
2||Cc||2 + c̄||ỹad||||W̃ ||F + ||ỹad||ε̄∗

−||zf ||
(

Qfm||zf ||
2 − ||PfBf ||||φ||

)

−λ||W̃ ||(||W̃ ||F −W ∗),
(52)

where
ε̄∗ =

ε∗hvMAX

hvMIN
≥ 0. (53)

Inequality (52) is the same as inequality (40) of
(Calise et al., 2001) with Qm, ε∗ and c replaced
by Q̄m, ε̄∗ and c̄ respectively. Therefore, the re-
maining of the proof is straightforward. 2

Remark 1. As can be seen in (52), in (Calise
et al., 2001) there is an error which was carried
out throughout the stability proof. Therefore,
the corrected condition that restricts the choice
of Q is Qm > 2||Cc1||2.

Remark 2. For systems with unknown but con-
stant control effectiveness, Hv = 0 and condition
(45) becomes

Qm > 2hvMAX ||Cc||2. (54)

The same condition can be used as an approxima-
tion to systems with unknown and slowing varying
hv̄ ( d

dt

{
1

hv̄

}
' 0 ).



Section 5 shows a design example to clarify
how this result affects the inversion model choice
and the adaptive control design.

5 Design Example

Most of papers that employ techniques similar to
that presented in works like (Calise et al., 2001;
Hovakimyan et al., 2002; Hovakimyan et al., 2004),
assume that contraction mapping holds and use an
approximate inverting model given by

v = u. (55)

Sometimes, an approximate linear model around
an operating point is used. This occurs spe-
cially in the state feedback case (Rysdyk and
Calise, 2005). In both cases, the question that
arises about the existence of a contraction map-
ping between vad and ∆ is not touched upon.
The following example shows that the contraction
mapping assumption can be easily violated in both
cases.

Example: Consider the nonlinear system
given by

ẋ1 = x2

ẋ2 = −x3
1 + cos(x2) + (K1 + K2sin(µx1))u,

(56)
with µ = 0.01, K1 = 1.2 and K2 = 1. Lin-
earization around the operating point xop =
[−15 0]T furnishes an approximate control effec-
tiveness ∂ĥr

∂u ' 1.0506, which clearly violates the
contraction mapping assumption if x1 = π/2µ.
The same thing occurs if Eq. (55) is used in the
inversion.

Suppose that an inverting control law of the
form v = K̄1u is used, then ∂ĥr

∂u = K̄1 and

hv̄ =
K1 + K2sin(µx1)

K̄1
|v=v̄, (57)

hvMAX =
K1 + K2

K̄1
. (58)

On the other hand

Hv = max

{
d

dt

[
K̄1

K1 + K2sin(µx1)

]}
, (59)

Hv = µK̄1K2max

{ −cos(µx1)x2

[K1 + K2sin(µx1)]2

}
.

(60)
This suggests that an increasing in K̄1 decreases
hv̄ and increases Hv, therefore this might not be
the best way to assure a solution for (45) and (47).
Now suppose that v = [K̄1 + K̄2sin(µx1)]u. Car-
rying out the same calculations for hvMAX and
Hv we get

hvMAX = max

{
K1 + K2sin(µx1)
K̄1 + K̄2sin(µx1)

}
, (61)

Hv = max

{
µ(K1K̄2 −K2K̄1)cos(µx1)x2

[K1 + K2sin(µx1)]2

}
.

(62)
If we have, K1 = 1.2, K̄1 = 1.2, K2 = 1 and
max(x2) = 1, for the case of linear inversion
v = K̄1u, hvMAX ' 1.83 and HvMAX ' 0.06. On
the other hand, for the nonlinear inverting control
law with K̄1 = 0.8 and K̄2 = 0.6, hvMAX ' 1.57
and Hv ' 0.004. Therefore, an approximate non-
linear inverting control law, that uses only output
measurements, can reduce simutaneously hvMAX

and Hv more than a linear inverting control law
that has a perfect estimate of K1. Another pos-
sibility to decrease the eigenvalues of P and to
reduce ||Cc|| is to change the magnitude of the
eigenvalues of Ac but in this case the system per-
formance may experience some degradation.

Now suppose that v = K̄1u, with K̄1 = 0.5,
and that the system has to follow a second order
reference model given by

ÿd = −yd −
√

1.8ẏd + u, (63)

commanded by a square reference signal of ampli-
tude equal to 2 and period 40s.

To place the closed loop of the input-output
linearized error dynamics at p0 = p1 = −4,
p2 = −1 + j and p3 = −1− j, the following linear
lead-lag compensator with an approximate inte-
gral control action was used

[
vdc(s)
ỹad(s)

]
=

[
33.9s2+48s+32.48

s2+10s+0.0999
0.17s2+0.34s+0.25

s2+10s+0.0999

]
ỹ(s) (64)

and the stable low pass filter was set to

T−1(s) =
1

5.86s + 1
. (65)

Remark 3. A lead-lag compensator without
integral control action leads to a system re-
sponse with steady state error. On the other
hand, a pure proportional-integral compensator
can not be used because it violates Assump-
tion 2, therefore, a compensator of the form
GPI(s) = Kp + KI

s+θ , with θ = 0.01, was added to
the lead-lag controller.

Remark 4. The reader can check that this design
easily satisfies (45) and (47), when Hv = −0.003,
hvMAX = 2.44 and Q = I6. These bounds were
calculated supposing that y and ẏ follow the
reference model. After the design was carried out,
the estimated signal ranges were verified through
simulations to assure that the design conditions
were fully satisfied. It is important to point out
that in a practical situation the system may be
unknown or partially known. Therefore Hv and
hvMAX should be estimated during some system
identification procedure.



The Gaussian NN comprises six units, with
centers randomly distributed over the interval
[−0.5 2.5], σ2 = 6 and the network input is η(t) =
[vl y(t) y(t−0.02) y(t−0.04) y(t−0.06) 1]T . The
adaptation gains are F = 500I6 and λ = 0.0015,
where I6 is the identity matrix of order 6.

Simulation results are shown in Fig. 2, where
it can be seen that the neural network can com-
pensate the inversion error and the system has a
significant performance improvement without loss
of stability, even when the contraction mapping
assumption is violated over the signal range.
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Figure 2: Simulation results: a) System response;
b) NN weight evolution.

6 Conclusions

This paper has addressed the problem of contrac-
tion mapping assumption required in a recently
developed approach for nonlinear adaptive output
feedback control using neural networks. It was
shown that the same update law that was obtained
in the original paper can still be applied with-
out the contraction mapping assumption provided
that some additional knowledge about the control
effectiveness is known by the designer. The re-
sult was illustrated on a simple example where
the contraction mapping assumption can be vio-
lated if most of the current approaches were used
to approximate the control effectiveness term.
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